การผลิตต์นกล้ายางพันธุ์ RRIM600 โดยการเพาะเลี้ยงต์นอ่อนจากเปลือกทุ้มชั้นในเมล็ด

ดร. วิทยา พรหมมี ผู้ถอดองค์ความรู้

กองวิจัยและพัฒนาการผลิตยาง สถาบันวิจัยยาง การยางแห่งประเทศไทย

คำนำ

การเพาะเลี้ยงเนื้อเยื่อยางพารา เป็นอีกทางเลือกหนึ่งของการขยาย พันธุ์ยางที่มีคุณภาพในอนาคต เนื่องจากต้นกล้าที่ได้จากการเพาะเลี้ยงเนื้อเยื่อ นั้นพัฒนามาจากเนื้อเยื่อหรือเซลล์ที่มีอายุน้อยซึ่งได้หลังจากการผสมเกสร 6-8 สัปดาห์ และมีระบบรากแก้วเหมือนต้นกล้าจากการการเพาะเมล็ด ทุกประการทำให้ไม่มีอุปสรรคในเรื่องของความเข้ากันได้ระหว่างต้นตอกับตา พันธุ์ดี เมื่อนำต้นกล้าไปปลูกสามารถเจริญเติบโตได้ดีเปิดกรีดได้เร็วขึ้นและ ให้ผลผลิตเพิ่มขึ้น แต่อย่างไรก็ตามในทุกประเทศที่มีงานวิจัยการเพาะเลี้ยง เนื้อเยื่อยางพารามีปัญหาในเรื่องของความสำเร็จของการเพาะเลี้ยงเนื้อเยื่อ คือ สำเร็จในยางบางพันธุ์เท่านั้น และปริมาณการผลิตต้นกล้าที่ได้ยังไม่มาก พอ สำหรับประเทศไทยก็เช่นเดียวกันมีรายงานถึงความสำเร็จในยางบางพันธุ์ เท่านั้น และยังคงต้องพัฒนากันต่อไปเพื่อใช้เป็นเครื่องมือทางเทคโนโลยี ชีวภาพสำหรับนำมาใช้ประโยชน์ในการพัฒนางานด้านยางพาราโดยเฉพาะ การขยายพันธุ์ และการปรับปรุงพันธุ์ยาง ได้แก่ การถ่ายฝากยีน และการสร้าง พันธุ์กลายด้วยสิ่งก่อกลายพันธุ์

เอกสารวิชาการฉบับนี้ได้จากการถอดองค์ความรู้ที่ได้จากการสะสม ประสบการณ์ในการทำงานวิจัยเกี่ยวกับการพัฒนางานด้านการเพาะเลี้ยง เนื้อเยื่อยางพารามาตั้งแต่ปี 2554-2561 และจากการเข้าร่วมอบรมใน ต่างประเทศ ได้แก่ การผลิตตั้นกล้ายางพาราโดยการเพาะเลี้ยงต้นอ่อนจาก อับละอองเกสรของสถาบันวิจัยยางแห่งประเทศจีน (RRI, CATAS) และ การผลิตชิ้นส่วนพืชของยางพาราในหลอดทดลองเพื่อใช้ในการขยายพันธุ์ยาง โดยวิธีการติดตาที่สถาบันวิจัยเทคโนโลยีชีวภาพและวิทยาศาสตร์ชีวภาพพืช เขตร้อน (ITBB, CATAS) ณ ประเทศสาธารณรัฐประชาชนจีน และการเพาะ เลี้ยงต้นอ่อนยางพาราจากเปลือกหุ้มชั้นในเมล็ดอ่อน ที่ ศูนย์วิจัยเกษตรกรรม แห่งฝรั่งเศสเพื่อการพัฒนาระหว่างประเทศ (Center de Cooperation International en Recherche Agronomique pour le Development : CIRAD) ประเทศฝรั่งเศส

หวังเป็นอย่างยิ่งว่าข้อมูลในเอกสารประกอบการถอดองค์ความรู้ ด้านการผลิตยางเล่มนี้จะเป็นประโยชน์ต่อนักวิจัย นักศึกษา ทั้งภาครัฐและ ภาคเอกชน ที่สนใจงานด้านการเพาะเลี้ยงเนื้อเยื่อยางพารา นำไปใช้ประโยชน์ ทางการศึกษาและพัฒนาต่อยอดงานด้านการเพาะเลี้ยงเนื้อเยื่อยางพารา หรือพืชอื่น ๆ ที่ใกล้เคียง

สถาบันวิจัยยาง

2562

สารบัญ

รื่อง		หน้า
1	ความสำคัญ	1
2	การผลิตต้นกล้ายางพารา	
	โดยการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ดอ่อน	4
3	การผลิตต้นกล้ายางพันธุ์ RRIM600	
	โดยการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ด	17
4	การตรวจสอบความถูกต้องทางพันธุกรรม	
	ของต้นยางจากการเพาะเลี้ยงต้นอ่อน	
	จากเปลือกหุ้มชั้นในเมล็ดอ่อนยางพาราพันธุ์ RRIM600	
	โดยใช้ Microsettellite	20
5	การเตรียมต้นกล้าลงดินปลูก	22
6	การเพาะเลี้ยงชิ้นส่วนพืชจากต้นกล้า	
	ที่ได้จากการเพาะเลี้ยงต้นอ่อน	29
7	การปลูกต้นกล้ายางในสภาพแปลง	33

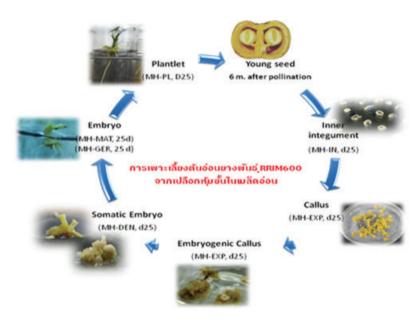
สารบัญ (ต่อ)

รื่อง		หน้า
8	ศึกษาสมรรถนะของต้นยางชำถุงพันธุ์ RRIM600	
	จากกิ่งตาต้นแม่เพาะเลี้ยงเนื้อเยื่อ	36
9	การนำผลงานวิจัยไปใช้ประโยชน์	39
10	ภาคผนวก	41
11	ประวัติและผลงาน	45
12	คำขอบคุณ	53

ความสำคัญ

การปลูกสร้างสวนยางในปัจจุบันนิยมใช้ต้นยางชำถุงเป็นวัสดุปลูก ซึ่งได้จากการขยายพันธุ์ด้วยวิธีการติดตาบนต้นตอจากการเพาะกล้า ข้อจำกัด ของต้นยางชำถุง คือ ผลกระทบจากต้นตอที่ใช้ติดตา และรอยตอระหว่าง ต้นตอและตา ตลอดจนระบบรากแก้วถูกตัดไปบางส่วนทำให้มีผลกระทบต่อ การเจริญเติบโตของต้นยางและการให้ผลผลิตยาง นอกจากนั้นพันธุ์ที่ใช้ เป็นต้นตอก็มีผลต่อคุณภาพของต้นยางชำถุง ถ้าต้นตอที่ได้จากเมล็ดพันธุ์ที่มี การเจริญเติบโตดี สามารถหาอาหารได้ดีทำให้การเจริญเติบโตดี และนอกจาก นั้นการเชื่อมต่อระหว่างต้นตอกับตา มีความเกี่ยวพันกับความเข้ากันได้ ระหว่างต้นตอและตาซึ่งจะมีผลต่อการเจริญเติบโต และการให้ผลผลิต ตลอด จนการเกิดอาการผิดปกติของต้นยางหลังปลูก เช่น การยืนต้นตายและตาย จากยอดของต้นยางหลังจากปลูก ดังนั้นการขยายพันธุ์ยางโดยวิธีการติดตา ควรพิจารณาพันธุ์ยางที่จะนำมาใช้เป็นต้นตอ

การเพาะเลี้ยงเนื้อเยื่อพืชเป็นเครื่องมือทางเทคโนโลยีชีวภาพ สำหรับนำมาใช้ประโยชน์ในการพัฒนางานด้านยางพาราโดยเฉพาะการขยาย พันธุ์ การพัฒนาไปเป็นต้นพืชที่สมบูรณ์จากการเพาะเลี้ยงเนื้อเยื่อนั้นสามารถ เกิดขึ้นได้ 2 กระบวนการ คือ กระบวนการการสร้างอวัยวะโดยต้นกล้าที่ได้ จะมีระบบรากแบบรากแก้วเทียมหรือรากแขนง และกระบวนการสร้างต้น อ่อนโดยต้นกล้าที่ได้มีระบบรากแก้วเหมือนต้นกล้าจากการเพาะเมล็ด ทุกประการ เมื่อนำไปปลูกสามารถเจริญเติบโตได้ดีเปิดกรีดได้เร็วขึ้นและ


ให้ผลผลิตสูงเนื่องจากต้นกล้าที่ได้มีระบบรากแก้วที่แข็งแรงสามารถดูดอาหาร ได้เก่งและไม่มีอุปสรรคในเรื่องของความเข้ากันได้ระหว่างต้นตอกับตาพันธุ์ดี ความสำเร็จในการเพาะเลี้ยงเนื้อยางมีรายงานในหลายประเทศ ได้แก่ มาเลเซีย จีน ฝรั่งเศส อินเดีย และ อินโดนีเซีย สำหรับประเทศไทยมีรายงาน ถึงความก้าวหน้าในระดับหนึ่ง และมีการนำต้นยางไปปลูกในสภาพแปลงปลูก พบว่ามีการเจริญเติบโตได้ดีกว่าต้นยางที่ได้จากการติดตา อย่างไรก็ตามการ เพาะเลี้ยงเนื้อยางพารายังคงมีอุปสรรคในทุกประเทศที่มีการศึกษาค้นคว้า วิจัย คือ ประสบความสำเร็จในยางบางพันธุ์เท่านั้น และไม่ค่อยประสบความ สำเร็จในพันธุ์ยางที่ให้ผลผลิตสูง การเพาะเลี้ยงเนื้อเยื่อพืชนอกจากนำมาใช้ ประโยชน์ในการพัฒนางานด้านยางพาราโดยการขยายพันธุ์แล้วยังสามารถ นำมาใช้ในการปรับปรุงพันธุ์ยางได้ สามารถลดขั้นตอนการปรับปรุงพันธุ์ยาง ให้สั้นลง เช่น การถ่ายฝากยืน การโคลนยืนและศึกษาการแสดงออกของยืน เป็นต้น จำเป็นต้องอาศัยเทคนิคการเพาะเลี้ยงเนื้อเยื่อเพื่อนำยีนที่ได้ถ่ายฝาก เข้าไปในเนื้อเยื่อเพื่อศึกษาถึงการแสดงออกของยืนในยางพาราตลอดจนน้ำ ยืนที่ได้ที่มีลักษณะที่ต้องการถ่ายฝากเข้าเนื้อเยื่อเพื่อสร้างพันธุ์ยางตัดแต่ง พันธุกรรม เช่น ยีนทนแล้ง ยีนให้ผลผลิตสูง ถึงแม้ว่าจะมีการถ่ายฝากยีนเข้าไป ในเนื้อเยื่อพืชได้สำเร็จก็ตาม ถ้าหากการเพาะเลี้ยงเนื้อยังไม่ประสบความสำเร็จ การพัฒนาไปเป็นต้นพืชที่สมบูรณ์จากเนื้อเยื่อก็ไม่สามารถเกิดขึ้นได้

สำหรับงานของผู้วิจัยก็เช่นกันสามารถเพาะเลี้ยงเนื้อเยื่อยางได้ สำเร็จเฉพาะในยางพันธุ์ RRIM600 โดยการเพาะเลี้ยงต้นอ่อน ในขณะที่พันธุ์ อื่น ๆ ยังไม่ประสบความสำเร็จทั้งนี้เนื่องจากยังมีข้อจำกัดหลายประการที่ไม่ สามารถสรุปได้ โดยเฉพาะพันธุกรรมของยาง ธาตุอาหารที่ใช้เป็นองค์ประกอบ ของอาหาร และสภาพแวดล้อมของวัสดุพืชที่นำมาใช้ทดลอง นอกจากนั้น เปอร์เซ็นต์ความสำเร็จของการพัฒนาไปเป็นต้นที่สมบูรณ์ยังต่ำและบางครั้ง ไม่มีการพัฒนาไปเป็นต้น ดังนั้นจึงนำต้นกล้าที่ได้ไปขยายพันธุ์โดยการเพาะ เลี้ยงชิ้นส่วนต่าง ๆ ในหลอดทดลอง ได้แก่ ข้อใบเลี้ยง และ ข้อ เพื่อผลิตต้น กล้าแบบไมโครคัตติ้งและขยายพันธุ์กิ่งตา เพื่อนำไปใช้ในการขยายพันธุ์โดย การติดตากับตนตออายุน้อยในสภาพแปลง ทำให้ลดระยะเวลา ลดต้นทุนใน การผลิตยางชำถุง ตลอดจนสะดวกในการขนย้ายและปลูกต้นยางในแปลง อย่างไรก็ตามงานวิจัยนี้ยังไม่มีการนำกิ่งตาที่ได้ไปติดตากับต้นต่ออายุน้อย แต่ ได้มีการนำกิ่งตาปกติมาติดตากับต้นตออายุน้อย และได้มีการนำต้นกล้ายาง ชำถุงไปปลูกในแปลงแล้วต้นยางสามารถเจริญเติบโตได้ดีและให้ผลผลิตสูง กว่าต้นยางชำถุงปกติ ซึ่งในอนาคตสามารถนำไปใช้เป็นต้นแบบในงานด้าน การเพาะเลี้ยงเนื้อเยื่อยางพาราพันธุ์อื่น ๆ ที่ให้ผลผลิตสูงเพื่อผลิตต้นแม่พันธุ์ สำหรับจำหน่ายกิ่งตาที่มีคุณภาพในเชิงการค้าได้

การผลิตตันกล้ายางพารา โดยการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ดอ่อน

สถาบันวิจัยยางได้มีการสร้างความร่วมมือกับศูนย์วิจัยเกษตรกรรม แห่งฝรั่งเศสเพื่อการพัฒนาระหว่างประเทศ (CIRAD) ในปี 2538 โดยการเพาะ เลี้ยงต้นอ่อนยางจากเยื่อหุ้มชั้นในเมล็ดอ่อน จากรายงานของ กรรณิการ์ ใน ปี 2545 ถึงความสำเร็จของการเพาะเลี้ยงต้นอ่อนยางจากเยื่อห้มชั้นในเมล็ด อ่อนบนอาหารสูตร MH (Carron et al., 1995) ที่เติมสารอาหารแตกต่างกัน ตามระยะการพัฒนาของเนื้อเยื่อ มีเพียงยางบางพันธุ์เท่านั้นที่สามารถพัฒนา ไปเป็นต้นที่สมบูรณ์ได้จากพันธุ์ยางทั้งหมด 25 พันธุ์ ได้แก่ พันธุ์ BPM24 สามารถสร้างต้นอ่อนที่สมบูรณ์ได้มากที่สุด ถึง 1,065 ต้น รองลงมาได้แก่ พันธุ์ PB311 RRIM600 และ RRII105 สร้างต้นอ่อนที่สมบูรณ์ได้ 39, 5 และ 4 ต้น ตามลำดับ หลังจากนำต้นที่ได้จากการเพาะเลี้ยงเนื้อเยื่อไปทำการปรับ สภาพในเรือนทดลองประมาณ 3 ถึง 5 เดือน และย้ายปลูกในสภาพแปลงใน ปี 2541 ทำการวัดขนาดเส้นรอบลำต้นยางอายุ 3 ปี ครึ่ง ที่ระดับ 170 เซนติเมตร จากพื้นดิน ต้นที่ได้จากการเพาะเลี้ยงเนื้อเยื่อมีขนาดเส้นรอบลำต้น มากกว่าต้นที่ได้จากการติดตา โดยมีขนาดเส้นรอบลำต้น 25.9 และ 20.7 เซนติเมตร ตามลำดับ ลักษณะของต้นที่ได้จากการเพาะเลี้ยงเนื้อเยื่อจะมี ลักษณะเป็นกรวย มีความแข็งแรง และมีการแตกกิ่งน้อยเช่นเดียวกับต้นยาง ที่ปลูกด้วยเมล็ด

ต่อมาในปี 2554-2558 วิทยา และคณะ ได้มีโครงการเพาะเลี้ยง เนื้อเยื่อและการปลูกถ่ายยืนในยางพาราเพื่อศึกษาและพัฒนาวิธีการขยาย พันธุ์ยางโดยการเพาะเลี้ยงต้นอ่อนจากเนื้อเยื่อตลอดจนการผลิตต้นยางพารา ที่สมบูรณ์จากเนื้อเยื่อและเพื่อพัฒนางานด้านการปลูกถ่ายยืนสำหรับใช้เป็น แนวทางในการสร้างยางพาราดัดแปลงพันธุ์เพื่อการปรับปรุงพันธุ์ยางใน อนาคต จากการทดลองสามารถเพาะเลี้ยงต้นอ่อนยางพาราได้สำเร็จในยาง พันธุ์ RRIM600 แต่ยังมีปัญหาเรื่องการพัฒนาไปเป็นต้นที่สมบูรณ์ยังต่ำ และ ได้มีการถ่ายฝากยีนเข้าสู่แคลลัสของยางพันธุ์ RRIM600 โดยใช้ Agrobacterium tumefaciens สายพันธุ์ EHA105 ที่มีพลาสมิด pCAM1304 ซึ่งมียืน gus เป็นยืนรายงานผล พบว่าการใช้ความเข้มข้นของเชื้อ OD600 = 0.6 และ ปลูกเชื้อนาน 1 วินาที ให้ประสิทธิภาพของการถ่ายยืนสูงที่สุด มีการยืนยัน ผลของการถ่ายยืนโดยพิจารณาจากการแสดงออกของยืน gus แบบชั่วคราว (transient expression) โดยวิธี Gus histochemical assay โดยการนับ จำนวนชิ้นเนื้อเยื่อที่ติดสีน้ำเงิน และจำนวนจุดสีน้ำเงินบนชิ้นเนื้อเยื่อ และ จากการตรวจสอบผลการถ่ายยีนเข้าสู่เนื้อเยื่อที่รอดชีวิตโดยการทำ PCR พบว่า เนื้อเยื่อที่รอดชีวิตบนอาหารคัดเลือกได้รับการถ่ายฝากยีน gus เข้าสู่เนื้อเยื่อ ได้สำเร็จ ระยะเวลาในการเลี้ยงร่วมกับ Agrobacterium tumefaciens ที่เหมาะสม คือ 3-5 วัน การกำจัดเชื้อ Agrobacterium tumefaciens บนอาหารที่เติม Cefotaxime 200-400 มิลลิกรัมต่อลิตร สามารถกำจัดเชื้อ ได้ดี ความเข้มข้นของ Kanamycin ที่เหมาะสมสำหรับการนำไปใช้คัดเลือก แคลลัสภายหลังการถ่ายยืน คือ 150 มิลลิกรัมต่อลิตร แต่แคลลัสที่ผ่านการ ถ่ายฝากยีนยังไม่สามารถพัฒนาไปเป็นต้นได้ ดังนั้นใน ปี 2557-2561 จึงได้ มีโครงการพัฒนาเทคนิคการเพาะเลี้ยงเนื้อเยื่อในยางพารา เพื่อศึกษาและ พัฒนาเทคนิคการเพาะเลี้ยงต้นอ่อนยางพันธุ์ RRIM600 จากเปลือกหุ้มชั้นใน เมล็ดอ่อนให้สามารถผลิตต้นกล้าให้ได้มากยิ่งขึ้นตลอดจนศึกษาและพัฒนา เทคนิคการเพาะเลี้ยงชิ้นส่วนพืชในสภาพปลอดเชื้อจากต้นอ่อนยางพันธุ์ RRIM600 เพื่อใช้เป็นกิ่งตาสำหรับการขยายพันธุ์ยางโดยการติดตาโดยใช้ อาหารสูตร MH (Carron et al., 1995) ที่มีองค์ประกอบของอาหารแตกต่าง ตามระยะการพัฒนาของเนื้อเยื่อเป็นต้นแบบในการศึกษาถึงปัจจัยที่มีผลต่อ ความสำเร็จในการเพาะเลี้ยงต้นอ่อนยางพารา โดยสามารถสรุปได้ว่าการ พัฒนาของเนื้อเยื่อไปเป็นต้นสมบูรณ์สามารถแบ่งออกเป็น 3 ระยะ คือ ระยะที่ 1 ระยะ Callogenesis เป็นระยะที่มีการสร้างแคลลัสจากชิ้นส่วนพืช และแคลลัสมีการพัฒนาไปเป็นเอ็มบริโอเจนิคแคลลัส (อาหารสูตร MH-IN และ MH-EXP) ระยะที่ 2 ระยะการ Somatic embryogenesis เป็นระยะ ที่เอ็มบริโอเจนิคแคลลัสมีการพัฒนาไปเป็นโซมาติกเอ็มบริโอ และเอ็มบริโอ (อาหารสูตร MH-DEN และ MH-MAT) ระยะที่ 3 ระยะ Regeneration เป็น ระยะที่เอ็มบริโอมีการพัฒนาไปเป็นต้นที่สมบูรณ์มีระบบรากแก้ว (อาหารสูตร MH-PI) (ภาพที่ 1)

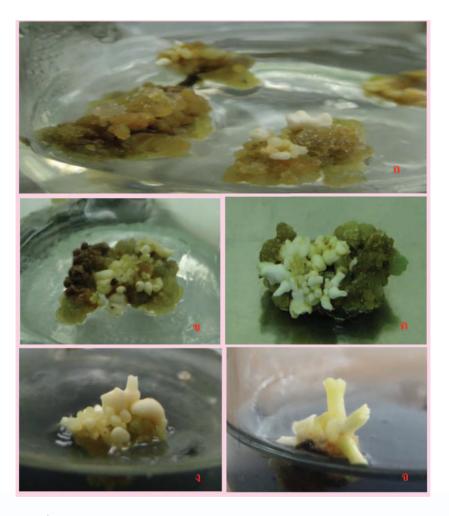
ภาพที่ 1 การเพาะเลี้ยงต้นอ่อนยางพันธุ์ RRIM600 จากเปลือกหุ้มชั้นในเมล็ดอ่อน

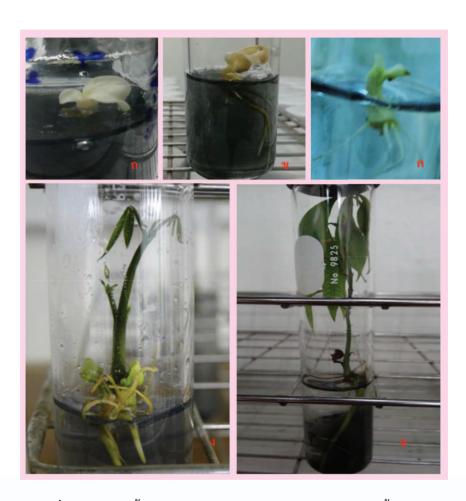
จากการเพาะเลี้ยงต้นอ่อนยางพาราในโครงการวิจัยที่ผ่านมายังมี ข้อจำกัด คือ สามารถเพาะเลี้ยงต้นอ่อนได้สำเร็จเพียงยางบางพันธุ์ และ นอกจากนั้นการพัฒนาไปเป็นต้นยังน้อย คือ สามารถเพาะเลี้ยงต้นอ่อน ยางพาราจากเปลือกหุ้มชั้นในเมล็ดอ่อนได้สำเร็จในยางพันธุ์ RRIM600 เท่านั้น ในขณะที่ยางพันธุ์อื่น ๆ ได้แก่ BPM24, RRIT408, RRIT226 และ RRIT251 ยังไม่ประสบความสำเร็จ และต้นที่ได้จากการเพาะเลี้ยงต้นอ่อน ประมาณ 10 เปอร์เซ็นต์ ทั้งนี้เนื่องจากความสำเร็จในการเพาะเลี้ยงต้นอ่อนยางพารามี

หลายปัจจัยที่เข้ามาเกี่ยวข้อง จึงต้องมีการศึกษาปัจจัยต่างๆที่มีผลต่อความ สำเร็จในการเพาะเลี้ยงต้นอ่อนเพื่อให้สามารถผลิตต้นยางให้ได้ปริมาณมาก

จากข้อจำกัดของการผลิตต้นกล้ายางโดยการเพาะเลี้ยงต้นอ่อน ดังกล่าว ทำให้สามารถผลิตต้นกล้าได้ปริมาณน้อย ต้นกล้าที่ได้มีต้นทุนสูง ไม่เหมาะสำหรับนำไปส่งเสริมให้เกษตรกรปลูก จึงต้องมีการพัฒนาเทคนิค การเพาะเลี้ยงต้นกล้าให้ได้ปริมาณมากเพื่อลดต้นทุนการผลิต อย่างไรก็ตาม ต้นยางที่ได้จากการเพาะเลี้ยงต้นอ่อนมีสมรรถนะที่สูง สามารถนำมาใช้เป็น ต้นแม่พันธุ์เพื่อขยายกิ่งตาสำหรับการผลิตต้นยางชำถุงที่มีคุณภาพ ซึ่งมี การผลิตเป็นเชิงการค้าแล้วในพืชบางชนิด เช่น ยูคาลิปตัส ดังนั้นในปี 2559 วิทยาและคณะ จึงเสนอโครงการวิจัยศึกษาสมรรถนะของต้นยางชำถุงพันธุ์ RRIM600 จากกิ่งตาต้นแม่เพาะเลี้ยงเนื้อเยื่อ เพื่อศึกษาสมรรถนะของต้นยางชำถุงพันธุ์ RRIM600 จากกิ่งตาต้นแม่เพาะเลี้ยงเนื้อเยื่อในด้านต่าง ๆ ได้แก่ ด้านการเจริญเติบโต ด้านการปรับตัวกับสภาพแวดล้อม และด้านการให้ผลผลิตน้ำยางของต้นยาง ชำถุงเปรียบเทียบกับต้นยางชำถุงจากตาแปลงกิ่งตาทั่วไป เพื่อเป็นข้อมูล ในการยืนยันถึงสมรรถนะของต้นยางชำถุงก่อนส่งเสริมในเชิงการค้าต่อไป ในอนาคต โดยปลูกทดสอบที่ ศูนย์วิจัยยางสุราษฎร์ธานี และปลูกทดสอบ ในแปลงเกษตรกรที่จังหวัดนครศรีธรรมราชและบุรีรัมย์

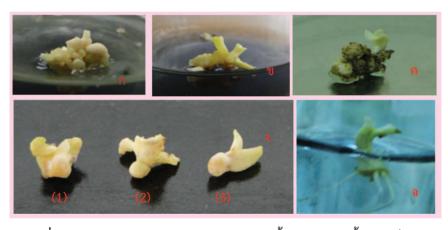
การเพาะเลี้ยงต้นอ่อนสามารถปฏิบัติตามขั้นตอนดังนี้


- 1. การเตรียมชิ้นส่วนพืช โดยการนำฝักอ่อนยางมาฟอกฆ่าเชื้อโดย การจุ่มในแอลกอฮอล์ 95 % และลนไฟ และนำไปผ่าเอาเมล็ดอ่อนมาทำการ ตัดส่วนของเปลือกชั้นนอกออกเหลือเฉพาะเปลือกหุ้มชั้นในจากนั้นผ่าเป็นสอง ซีก และหั่นตามขวางเป็นชิ้นบาง ๆ (ภาพที่ 2)
- 2. การซักนำการสร้างและเพิ่มปริมาณแคลลัส นำชิ้นส่วนพืชวาง เลี้ยงบนอาหารสูตร MH-IN เพื่อซักนำการสร้างแคลลัสและเพิ่มปริมาณ แคลลัสที่ได้บนอาหารสูตรเดิม โดยการเปลี่ยนถ่ายอาหารใหม่สูตรเดิมทุก 2-3 สัปดาห์ (ภาพที่ 3)
- 3. การชักนำการสร้างเอ็มบริโอเจนิคแคลลัส โดยการนำแคลลัสที่ ได้วางเลี้ยงบนอาหารสูตร MH-EXP เพื่อชักนำการสร้างเอ็มบริโอเจนิคแคลลัส จากนั้นเปลี่ยนถ่ายบนอาหารใหม่สูตรเดิมทุก 2-3 สัปดาห์ (ภาพที่ 4)
- 4. การชักนำการสร้างโซมาติกเอ็มบริโอ ต้นอ่อน และการพัฒนา ไปเป็นต้นที่สมบูรณ์ โดยการนำเอ็มบริโอเจนิคแคลลัสที่ได้วางเลี้ยงบนอาหาร สูตร MH-DEN และ MH-MAT เพื่อชักนำการพัฒนาไปเป็นโซมาติกเอ็มบริโอ ต้นอ่อน และ ตัดแยกส่วนของต้นอ่อนไปวางเลี้ยงบนอาหารสูตร MH-PL เพื่อ ชักนำให้เป็นต้นที่สมบูรณ์ (ภาพที่ 4 และ 5)


ภาพที่ 2 การเตรียมชิ้นส่วนพืชจากฝักยาง อายุ 6-8 สัปดาห์หลังผสมเกสร

ภาพที่ 3 การซักนำการสร้างแคลลัสจากขึ้นส่วนพืช การเพิ่มปริมาณการสร้าง แคลลัสหลังวางเลี้ยงบนอาหาร ก) หลังวางเลี้ยง 1 สัปดาห์ ข) หลังวางเลี้ยง 2 สัปดาห์ ค) หลังวางเลี้ยง 3 สัปดาห์ ง) หลังวางเลี้ยง 4 สัปดาห์

ภาพที่ 4 การซักนำการสร้างเอมบริโอเจนิคแคลลัส และการพัฒนาไปเป็นโซ มาติกเอ็มบริโอระยะต่าง ๆ ก) เอมบริโอเจนิคแคลลัส ข) โซมาติคเอมบริโอระยะ เริ่มแรกมีลักษณะกลม ค-จ) โซมาติคเอมบริโอระยะตอปิโดและรูปหัวใจ


ภาพที่ 5 การเพาะเลี้ยงต้นอ่อนยางพันธุ์ RRIM600 จากเปลือกหุ้มชั้นในเมล็ด : การชักนำการสร้างต้นอ่อน และการพัฒนาไปเป็นต้นที่สมบูรณ์ ก-ค) ต้นอ่อน ง และ จ) ต้นยาง

จากการศึกษาถึงปัจจัยที่มีผลต่อความสำเร็จในการเพาะเลี้ยงต้น อ่อนจากเปลือกหุ้มชั้นในเมล็ดอ่อนยางพารา โดยศึกษาพันธุ์ยาง อายุฝักยาง ขนาดเมล็ด ความหนาเปลือกหุ้มชั้นในเมล็ด ความหนาของชิ้นส่วนพืช และ อาหาร พบว่าพันธุ์ยางและอาหารที่ใช้เพาะเลี้ยงชิ้นส่วนพืชมีอิทธิพลต่อการ สร้างต้นอ่อนมากที่สุด โดยเฉพาะพันธุ์ยางที่ให้ผลผลิตสูงนั้นการเพาะเลี้ยงต้น อ่อนสำเร็จยากกว่าพันธุ์ที่ให้ผลผลิตต่ำทั้งนี้เนื่องจากพันธุ์ยางที่ให้ผลผลิตสูง มีเซลล์ท่อน้ำยางจำนวนมากทำให้มีผลไปยับยั้งการพัฒนาของเนื้อเยื่อ

จากการศึกษาถึงพันธุ์ยางที่มีผลต่อความสำเร็จในการเพาะเลี้ยงต้น อ่อนจากเปลือกหุ้มชั้นในเมล็ด ได้แก่ RRIM600, RRIT251, BPM24, RRII105, RRIT226, RRIT408 และ PB260 พบว่าเนื้อเยื่อของยางทุกพันธุ์สามารถพัฒนา ไปเป็นแคลลัส เอมบริโอเจนิคแคลลัส โซมาติกเอมบริโอ และเอมบริโอได้ แต่ ยางพันธุ์ RRIM600 จะมีการตอบสนองได้ดีกว่ายางพันธุ์อื่น ๆ แคลลัสที่ได้มี 3 ลักษณะ คือ เป็นเม็ดอัดแน่น เป็นเม็ดอัดแน่นร่วมกับเกาะกันหลวม ๆ และ เกาะกันหลวม ๆ (ภาพที่ 6) แต่มีเพียงยางพันธุ์ ได้แก่ RRIM600, RRIT226 และ BPM24 เท่านั้นที่สามารถพัฒนาไปเป็นโซมาติกเอมบริโอ ต้นอ่อน และ ต้นที่สมบูรณ์ได้สำเร็จ ลักษณะของเอมบริโอที่สร้างสามารถแบ่งออกเป็น 3 ลักษณะ คือ (1) เอ็มบริโอลักษณะใบเลี้ยงติดกันมีลักษณะบิดงค ลักษณะ ผิดปกติ มีตุ่มกำเนิดรากและใบเลี้ยง 2 ใบ (2) เอ็มบริโอ มีตุ่มกำเนิดรากและ ใบเลี้ยง 3 ใบ และ (3) เอ็มบริโอลักษณะปกติ คือ ประกอบด้วยจุดกำเนิดราก ใบเลี้ยง และจุดกำเนิดยอด (ภาพที่ 7) แต่มีเพียงยางพันธุ์ RRIM600 เท่านั้น ที่มีการตอบสนองดีที่สุดสามารถผลิตต้นกล้าได้มากกว่าพันธุ์อื่น ๆ ต้นกล้าที่ ได้จากการเพาะเลี้ยงต้นอ่อนมี 2 ลักษณะ คือ ต้นกล้าลักษณะปกติ มีลำต้น ใบ และ ราก และต้นกล้าลักษณะผิดปกติ มีเฉพาะส่วนของราก ส่วนของยอด ไม่มีการพัฒนาไปเป็นลำต้น (ภาพที่ 8) อย่างไรก็ตามความสำเร็จของการ เพาะเลี้ยงต้นก่อนยางยังต่ำ คือ ประมาณ 2-10 เปอร์เซ็นต์ และกระบวนการ พัฒนาเป็นต้นยังไม่นิ่งซึ่งบางครั้งยังไม่ประสบความสำเร็จทั้งนี้อาจขึ้นอย่กับ ความสมบูรณ์ของฮอร์โมนภายในเมล็ดยาง ฤดูกาลและสภาพภูมิอากาศใน ขณะที่ติดฝัก เป็นต้น สำหรับอายุฝักยางหลังผสมเกสรสามารถนำมาใช้ได้ ์ ตั้งแต่อายุฝัก 4-8 สัปดาห์ ซึ่งเนื้อเยื่ออยู่ในระยะที่สามารถพัฒนาได้ดี ถ้าอายุ ฝักแก่เกินไปส่งกระทบต่อการพัฒนาของเนื้อเยื่อไปเป็นแคลลัสได้ จากการ เก็บฝักอ่อนยางพันธุ์ RRIM600 หลังผสมเกสร 6-8 สัปดาห์ มาศึกษาขนาด ของเมล็ด ความหนาเปลือกหุ้มชั้นในเมล็ด และความหนาของขิ้นส่วนพืชต่อ การเพาะเลี้ยงต้นอ่อน สามารถเพาะเลี้ยงต้นอ่อนได้สำเร็จโดยใช้เมล็ดอ่อนที่ ขนาด 0.5-0.7 เซนติเมตร ความหนาเปลือกหุ้มชั้นในเมล็ดอ่อน ขนาด 0.1-0.3 เซนติเมตร และ ความหนาของชิ้นส่วนพืช ขนาด 0.1 เซนติเมตร สามารถ พัฒนาไปเป็นต้นกล้าที่สมบูรณ์ได้สำเร็จ สำหรับสูตรอาหารได้มีการดัดแปลง สูตรอาหาร MH หรือ MS เนื้อเยื่อสามารถพัฒนาไปเป็นแคลลัสได้ดี มีการ สร้างแคลลัส 100 % แคลลัสที่ได้มีลักษณะเกาะกันแน่นสีเหลืองปกติ แต่หลัง จากย้ายเอ็มบริโอเจนิคแคลัสไปวางเลี้ยงบนอาหารสูตรซักนำการสร้างต้นพบ ว่าเอ็มบริโอเจนิคแคลัสจากอาหารทุกสูตรไม่มีการพัฒนาไปเป็นต้นได้

ภาพที่ 6 ลักษณะของแคลลัสที่ชักนำจากชิ้นส่วนเปลือกหุ้มชั้นในเมล็ดอ่อนยาง สามารถจำแนกออกเป็น 3 ลักษณะ คือ เป็นเม็ดอัดแน่น เป็นเม็ดอัดแน่น ร่วมกับเกาะกันหลวม ๆ และ เกาะกันหลวม ๆ

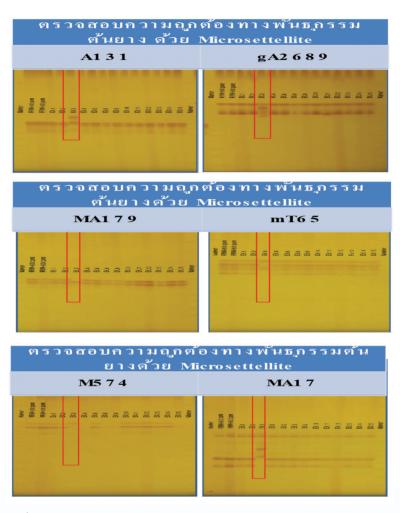
ภาพที่ 7 การเกิดโซมาติกเอมบริโอจากการเพาะเลี้ยงเปลือกหุ้มชั้นในเมล็ดยาง พันธุ์ RRIM600 ก) โซมาติกเอมบริโอระยะกลม ข) โซมาติกเอมบริโอระยะตอบิโด และหัวใจ ค) โซมาติกเอมบริโอระยะต้นอ่อน ง) โซมาติกเอมบริโอระยะต้นอ่อน ประกอบด้วยเนื้อเยื่อเจริญส่วนปลายยอด ใบเลี้ยง และเนื้อเยื่อเจริญส่วนปลายราก แบ่งออกเป็น 3 ลักษณะ คือ (1) ลักษณะผิดปกติ เอ็มบริโอมีใบเลี้ยงติดกันและ บิดงอ มีตุ่มกำเนิดรากและใบเลี้ยง 2 ใบ (2) เอ็มบริโอ มีตุ่มกำเนิดรากและ ใบเลี้ยง 3 ใบ และ (3) เอ็มบริโอลักษณะปกติ จ) ลักษณะของต้นอ่อนที่มีการ พัฒนาไปเป็นยอด ลำต้น และราก

ภาพที่ 8 ลักษณะต้นยางจากการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นใน ก) ต้นสมบูรณ์ และ ข) ต้นไม่สมบูรณ์

การผลิตตันกล้ายางพันธุ์ RRIM600 โดยการเพาะเลี้ยงตันอ่อนจากเปลือกหุ้มชั้นในเมล็ด

จากความสำเร็จของการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นใน เมล็ดอ่อนฝักยางพันธุ์ RRIM600 ได้ดีกว่าพันธุ์ยางอื่น ๆ จึงได้นำมาใช้เป็นต้น แบบในการศึกษาและพัฒนาการเพาะเลี้ยงเนื้อเยื่อยางพารา โดยการนำเมล็ด อ่อนหลังผสมเกสร 6 สัปดาห์ มาหั่นเป็นชิ้นความหนาเยื่อหุ้มชั้นในเมล็ดอ่อน และความหนาชิ้นส่วนพืช ประมาณ 0.1 เซนติเมตร และ วางเลี้ยงบนอาหาร เพาะเลี้ยงต้นอ่อนยางพาราสูตร MH (Carron 1995) ชิ้นส่วนพืชที่เลี้ยงมีการ พัฒนาของเนื้อเยื่อไปเป็นแคลลัส เอ็มบริโอเจนิคแคลลัส โซมาติกเอ็มบริโอ เอ็มบริโอ และมีการพัฒนาไปเป็นต้นที่สมบูรณ์มีระบบรากแก้ว จำนวนชิ้น ส่วนพืชที่วางเลี้ยง 2,850 ชิ้น มีการสร้างแคลลัส 2,294 ชิ้น คิดเป็น 80 เปอร์เซ็นต์ ลักษณะของแคลลัสที่ได้จากชิ้นส่วนเปลือกหุ้มชั้นในเมล็ดอ่อน ส่วนใหญ่มีลักษณะเป็นเม็ดอัดแน่นร่วมกับเกาะกันหลวมๆ แคลลัสที่ได้มีการ พัฒนาไปเป็นเอ็มบริโอเจนิคแคลลัส 989 ชิ้น คิดเป็น 43 เปอร์เซ็นต์ของ แคลลัส หลังจากนำนั้นไปวางเลี้ยงบนอาหารสูตรชักนำให้เกิดโซมาติก เอ็มบริโภ พบว่ามีการพัฒนาไปเป็นโซมาติกเอ็มบริโภ 588 โซมาติกเอ็มบริโภ และเมื่อนำไปวางเลี้ยงบนอาหารสูตชักนำให้เกิดเอ็มบริโอ พบว่ามีการพัฒนา ไปเป็นเอ็มบริโอ 364 เอ็มบริโอ คิดเป็น 62 เปอร์เซ็นต์ของโซมาติกเอ็มบริโอ การเกิดเอมบริโอจะมีทั้งปกติและผิดปกติ เมื่อนำเอ็มบริโอไปวางเลี้ยงบน อาหารสูตรชักนำการสร้างต้น พบว่าเอ็มบริโอมีการพัฒนาไปเป็นต้นที่สมบูรณ์ 37 ต้น คิดเป็น 10 เปอร์เซ็นต์ของเอ็มบริโอ และนอกจากนั้นพบว่าเอ็มบริโอ มีการพัฒนาไปเป็นต้นไม่สมบูรณ์ มีลักษณะบิดงอและไม่มีการพัฒนา แต่ ระบบรากมีการพัฒนาและการเจริญเติบโตดี จำนวน 293 ต้น คิดเป็น 81 เปอร์เซ็นต์ของเอ็มบริโอ เอ็มบริโอไม่มีการพัฒนาเป็นต้นและรากยังคงมี ลักษณะเป็นเอ็มบริโอแต่มีการเปลี่ยนจากสีขาวเป็นสีเขียว จำนวน 34 เอมบริโอ คิดเป็น 9 เปอร์เซ็นต์ของเอ็มบริโอ (ตารางที่ 1)

ตารางที่ 1 การเพาะเลี้ยงต้นอ่อนยางพันธุ์ RRIM600 จากเปลือกหุ้มชั้นในเมล็ด


ชิ้นส่วน	เกิด	เกิด	เกิด	เกิด	เกิดต้น	เกิดต้น	ไม่มีการ
พืช	แคลลัส	เอ็มบริโอ	โซมาติก	เอ็มบริโอ	สมบูรณ์	ไม่สมบูรณ์	พัฒนา
		เจนิค	เอ็มบริโอ				
		แคลลัส					
ชิ้น	ชิ้น	ชิ้น		ต้น	ต้น	ต้น	ต้น
2850	2294	989	588	364	37	293	34
	(80)	(43)		(62)	(10)	(81)	(9)

⁽⁾ เปอร์เซ็นต์

อย่างไรก็ตามผลสำเร็จของการเพาะเลี้ยงต้นอ่อนจากฝักยางพันธุ์ RRIM600 ที่อายุฝักยางหลังผสมเกสร 6 สัปดาห์ นั้นจะแปรปรวนไปตามสภาพ แวดล้อมหรือฤดูกาลที่เก็บฝักยาง เนื่องจากยางพาราจะออกดอกและติดฝัก ปีละ 2 ครั้ง และมีการออกดอกนอกฤดูกาล ซึ่งแต่ละช่วงเวลาสภาพแวดล้อม มีความแปรปรวน โดยเฉพาะสภาพภูมิอากาศ เช่น แสงและอุณหภูมิ ส่งผล ต่อความสมบูรณ์ของเมล็ดและความสมดุลฮอร์โมนภายในเมล็ด จากการเพาะ เลี้ยงเยื่อหุ้มชั้นในเมล็ดอ่อนจากฝักยางพันธุ์ RRIM600 บนอาหารสูตรชักนำ แคลลัส บางฤดูกาล พบว่า เมล็ดอ่อนจากฝักยางสามารถชักนำการสร้าง แคลลัสได้ 93 เปอร์เซ็นต์ หลังจากย้ายแคลลัสวางเลี้ยงบนอาหารสูตรชักนำ เอ็มบริโอเจนิคแคลัสพบว่าแคลลัสมีการพัฒนาไปเป็นเอ็มบริโอเจนิคแคลลัส 2 เปอร์เซ็นต์ หลังจากย้ายเอ็มบริโอเจนิคแคลลัสวางเลี้ยงบนอาหารสูตรชักนำ โซมาติกเอ็มบริโอ พบว่าเอ็มบริโอเจนิคแคลลัสมีการพัฒนาไปเป็นโซมาติก เอ็มบริโอ 6.4 โซมาติกเอ็มบริโอต่อก้อนแคลลัส พัฒนาไปเป็นเอ็มบริโอ 39.4 เปอร์เซ็นต์ และพัฒนาไปเป็นต้นสมบูรณ์ 2.4 เปอร์เซ็นต์ แต่ในบางครั้งเก็บ ฝักยางที่ออกนอกฤดูมีการตอบสนองของเนื้อเยื่อได้ดีมีการพัฒนาไปเป็นต้น ได้สูงกว่าในช่วงออกดอกตามฤดูกลาล อย่างไรก็ตามยังไม่สามารถสรุปฤดูกาล ออกดอกที่เหมาะสมต่อการเพาะเลี้ยงต้นอ่อนยางพาราได้เนื่องจากยังมีข้อมูล ไม่เพียงพอในการยืนยัน

การตรวจสอบความถูกต้องทางพันธุกรรม ของต้นยางจากการเพาะเลี้ยงต้นอ่อนจาก เปลือกหุ้มชั้นในเมล็ดอ่อนยางพันธุ์ RRIM600 โดยใช้ Microsettellite

ต้นยางที่ได้จากการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ดต้อง ผ่านกระบวนการต่าง ๆ ในการพัฒนาของเนื้อเยื่อในแต่ละระยะที่มี องค์ประกอบของธาตุอาหารและสารควบคุมการเจริญเติบโตแตกต่างกัน ตลอดจนสภาพแวดล้อมในการวางเลี้ยงที่ถูกควบคุม เช่น แสง และอุณหภูมิ อาจมีผลทำให้เซลล์และเนื้อเยื่อมีการแบ่งตัวและเจริญเติบโตผิดปกติทำให้ เกิดการกลายพันธุ์ได้ เรียกว่า การกลายพันธุ์ของพืชเนื่องจากการเพาะเลี้ยง เนื้อเยื่อ (Somaclonal variation) ดังนั้นจึงต้องมีการตรวจสอบความถูกต้อง ทางพันธุกรรมของต้นยางที่ได้ก่อนนำไปปลูกหรือขยายพันธุ์ต่อไปเพื่อยืนยัน จากการตรวจสอบความถูกต้องทางพันธุกรรมด้วยลายพิมพ์ดีเอ็นเอของต้น ยางที่ได้จากการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ดอ่อนยางพารา พันธุ์ RRIM600 จำนวน 13 ต้น และต้นเปรียบเทียบพันธุ์ RRIM600 (เก็บจาก แปลงกิ่งตา) โดยใช้ Microsettellite จำนวน 6 ไพร์เมอร์ คือ A131, gA2689, MA179, mT65, M574 และMA17 พบว่ามีต้นยางที่ได้จากการเพาะเลี้ยงต้น ค่อบจำนวน 12 ต้นที่มีลายพิมพ์ดีเอ็นเอเหมือบต้นเปรียบเทียบ RRIM600 ใน ขณะที่ 1 ต้น (ตัวอย่างที่3) มีลายพิมพ์ดีเอ็นเอแตกต่างไปจากต้นเปรียบเทียบ ในทุกไพร์เมอร์คิดเป็นต้นมีการผิดปกติทางพันธุกรรม 8 เปอร์เซ็นต์ (ภาพที่ 9)

ภาพที่ 9 การตรวจสอบความถูกต้องทางพันธุกรรมของต้นกล้ายางพันธุ์ RRIM600 จากการเพาะเลี้ยงต้นออ่อน จำนวน 13 ต้น โดยใช้ไพรเมอร์ 6 ชนิด คือ A131, gA2689, MA179, mT65, M574 และ MA17

การเตรียมตันกล้าลงดินปลูก

การเตรียมต้นกล้าลงดินปลูกเป็นการเตรียมความพร้อมโดยปรับ สภาพต้นพืชให้พร้อมออกปลูกเพื่อจะรับต่อการเปลี่ยนแปลงของสภาพ แวดล้อมทั้งด้านความเข้มแสง ช่วงแสง ระดับอุณหูมิ การเปลี่ยนแปลงของ อุณหภูมิ ระดับความชื้นสัมพัทธ์ ตลอดจนระดับความเข้มข้นของ คาร์บอนไดออกไซด์ พืชบางชนิดจำเป็นต้องถูกเตรียมพร้อมเป็นเวลานาน ขณะที่พืชบางชนิดแทบจะไม่จำเป็นต้องผ่านการเตรียมพร้อมก็สามารถปรับ ตัวได้อย่างรวดเร็ว การเตรียมตัววิธีนี้เป็นการกระตุ้นให้พืชพัฒนาระบบการ ป้องกันตัวจากความเข้มแสงหรืออุณหูมิที่สูงเกินพอดี โดยพืชอาจสะสมไข บริเวณผิวใบ ขณะที่ต้นพืชเจริญเติบโตในภาชนะเพาะเลี้ยง ปากใบมักจะเปิด อยู่ตลอดเวลาเนื่องจากความชื้นสัมพัทธ์ภายในภาชนะใกล้ 100 เปอร์เซ็นต์ ปากใบของพืชบางชนิดอาจไม่สามารถปิดได้เมื่อความชื้นสัมพัทธ์ลดลง จึงตาย เนื่องจากการขาดน้ำเมื่อย้ายออกปลูก การลดความชื้นสัมพัทธ์ภายในภาชนะ เพาะเลี้ยงอย่างค่อยเป็นค่อยไปโดยการคลายเกลี่ยวฝาขวด หรือใช้ฝาขวดที่ ยอมให้ความชื้นภายในขวดแพร่ออกสู่ภายนอกได้เป็นวิธีที่ช่วยให้ปากใบ พัฒนากลไกในการเปิดปิดได้ดีขึ้น การปรับตัวจะใช้เวลานานต่างกันตามชนิด ของพืช

หลังจากต้นพืชอยู่ในสภาพพร้อมปลูกแล้ว จึงนำต้นพืชเหล่านั้นมา พักชำในภาชนะปลูกที่เหมาะสำหรับชนิดและขนาดของพืชนั้น ๆ การเลือก

ภาชนะที่ไม่เหมาะสมจะทำให้พืชได้รับความชื้นสูงเกินไปจนเน่าตายได้หรือ พืชสูญเสียความชื้นเร็วเกินไปจนแห้งตายได้ นอกจากนั้นการเลือกใช้วัสดุปลูก ยังเป็นสิ่งสำคัญต่อการย้ายออกปลูกอีกด้วย ทั้งนี้เนื่องจากส่วนผสมของวัสดุ ปลูกแต่ละอย่างหรือแต่ละสูตรจะมีความสามารถในการอุ้มและระบายน้ำ ตลอดจนยอมให้อากาศถ่ายเทได้ต่างกัน เมื่อนำต้นพืชออกปลูกในวัสดุปลูก แล้วจะต้องนำต้นพืชไปเก็บดูแลรักษาอย่างเหมาะสม โดยปัจจัยที่ต้องได้รับ การดูแลอย่างเป็นพิเศษคือความชื้นในอากาศ การใช้กระโจมพลาสติกเป็นวิธี อย่างง่ายในการสร้างสภาพอากาศที่มีความชื้นสูงสำหรับการพักชำพืชจำนวน ไม่มากนัก การพักชำพืชจำนวนมากนิยมใช้การพ่นฝอยเป็นระยะ ๆ เพื่อเพิ่ม ความชื้นในอากาศภายในโรงเรือนพักชำ การเพิ่มความชื้นสัมพัทธ์ในอากาศ นั้นต้องระลึกเสมอว่าพืชต้องการให้อากาศชื้นเพื่อลดการสูญเสียน้ำ แต่ไม่ ต้องการให้วัสดุเพาะชำแฉะเพราะจะทำให้รากขาดอากาศหายใจและตายได้ ขณะเดียวกันความแฉะอาจจะทำให้ต้นพืชเกิดอาการเน่าบริเวณโคนต้นส่วน ที่ติดกับผิววัสดุพักชำ หลังจากพืชได้รับสภาพความขึ้นสัมพัทธ์สูงเป็นระยะ เวลาหนึ่งแล้วพืชสามารถปรับตัวได้จะสร้างใบขึ้นใหม่พร้อม ๆ กับการสร้าง รากใหม่ หากพืชผ่านระยะนี้ได้แล้ว การลดความชื้นในอากาศจะไม่ทำให้พืช ได้รับอันตรายอีกต่อไป จากนั้นสามารถย้ายพืชเหล่านี้ไปปลูกในสภาพโรงเรือน ปกติ

จากการปรับสภาพต้นกล้ายางพันธุ์ RRIM600 ที่ได้จากการเพาะ เลี้ยงต้นอ่อนในกระโจมควบคุมความชื้น โดยนำต้นกล้าที่ได้มาล้างรากเอาเศษ อาหารวุ้นออกแล้วจุ่มแช่ในสารเคมีป้องกันกำจัดเชื้อรา และย้ายปลูกลงในถุง เพาะชำโดยมีวัสดุเพาะชำระหว่างดินและขุยมะพร้าว 1:1 วางเลี้ยงในตะกร้า

พลาสติก สเปรย์น้ำให้ชุ่มและหุ้มด้วยพลาสติกใสเพื่อควบคุมความชื้นภายใน นำไปวางเลี้ยงในสภาพอุณหภูมิห้องและวางเลี้ยงในตู้ควบคุมความชื้นและ อุณหภูมิ หลังจากวางเลี้ยง 3-4 สัปดาห์ ต้นกล้าที่รอดชีวิตสามารถตั้งตัวได้ โดยการวางเลี้ยงแบบควบคุมความชื้นทั้งภายในและภายนอกต้นกล้าสามารถ รอดชีวิตได้สูงถึง 70-80 เปอร์เซ็นต์ ในขณะที่การวางเลี้ยงแบบควบคุม ความชื้นภายในอย่างเดียว มีต้นกล้ารอดชีวิต ประมาณ 40-50 เปอร์เซ็นต์ หลังจากวางเลี้ยง 4-8 สัปดาห์ ต้นกล้ามีการรอดชีวิตลดลง เหลือประมาณ 10-20 เปอร์เซ็นต์ เนื่องจากการจัดการเรื่องการควบคุมความชื้นภายใน ไม่เหมาะสมทำให้ต้นเกิดอาการเน่าตาย ย้ายต้นกล้ารอดที่วิตไปวางเลี้ยงภายใน ห้องแต่ไม่มีการควบคุมความชื้นจนต้นกล้าตั้งตัวได้และย้ายไปวางเลี้ยงในเรือน เพาะชำ ได้รับแสงตามธรรมชาติจนต้นกล้ามีการเจริญเติบโตดีมีการสร้างฉัตร เพิ่มขึ้น (ภาพที่ 10) จากการนำต้นกล้ายางจากการเพาะเลี้ยงต้นอ่อนจาก เปลือกหุ้มชั้นในเมล็ดอ่อนยางพันธุ์ RRIM600 จากปรับสภาพจนต้นกล้ามี ความแข็งแรงและสมบูรณ์ ปลูกลงดินเป็นระยะเวลา 1 เดือน พบว่าต้นกล้า รอดตาย 100 เปอร์เซ็นต์ และต้นยางสามารถเจริญเติบโตได้ดีและมีการ พัฒนาการที่เร็วมาก (ภาพที่ 11)

ภาพที่ 10 การปรับสภาพต้นกล้ายางจากการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้ม ชั้นในเมล็ดเมล็ดอ่อนยางพันธุ์ RRIM600 และการย้ายกล้าปลูกลงดิน ก) การ ปรับสภาพต้นกล้าโดยการควบคุมความชื้นภายใน ข) การปรับสภาพต้นกล้าโดย การควบคุมความชื้นภายในและภายนอก ค) ต้นกล้ารอดชีวิตหลังปรับสภาพ ง) ต้นกล้ารอดชีวิตหลังปรับสภาพวางเลี้ยงภายในอุณหภูมิห้อง จ และ ฉ) ต้นกล้า รอดชีวิตยำยวางเลี้ยงในสภาพเรือนเพาะชำ

ภาพที่ 11 การย้ายกล้าปลูกลงดินของต้นกล้ายางจากการเพาะเลี้ยงต้นอ่อนจาก เปลือกหุ้มชั้นในเมล็ดอ่อนยางพันธุ์ RRIM600 ก) การเจริญเติบโตของต้นกล้า ยางหลังปลูกลงดิน 1 เดือน และ ข) หลังปลูก 5 เดือน

จากการปรับสภาพต้นกล้ายางพันธุ์ RRIM600 ภายใต้ Growth chamber โดยนำต้นกล้ายางจากการเพาะเลี้ยงต้นอ่อน ที่มีใบจริง 3-4 ใบ มาวางเลี้ยงในอาหารเหลวสูตร MS (Murashige และ Skoog, 1962) ที่มี เวอร์มิคูไรด์เป็นวัสดุค้ำจุนมาผ่านกระบวนการเตรียมต้นในระบบการเพาะ เลี้ยงแบบ Photoautotrophic condition ระยะเวลา 1 เดือน ในห้องเพาะ เลี้ยง โดยมีการใช้ปริมาณคาร์บอนไดออกไซด์ 350-1,500 μ mol CO $_2$ mol 1 วางเลี้ยงในสภาพความเข้มแสง 120 μ mol m 2 s $^{-1}$ ให้แสง 16 ชั่วโมงต่อวัน ใน Plant Growth Incubator อุณหภูมิ 30/26 (กลางวัน/กลางคืน) องศาเซลเซียส ควบคุมสภาพความชื้นในตู้เพาะเลี้ยง 75% การไหลเวียนของ อากาศ 2.1 ไมโครโมลต่อวินาที ผ่าน Air-Millipore filter (0.2 ไมครอน)

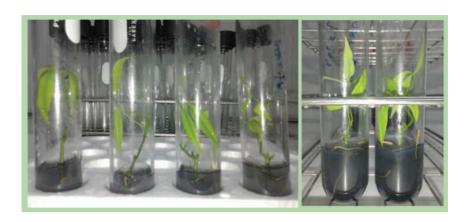
ที่ติดบริเวณฝาขวดและย้ายออกปลูกในสภาพเรือนเพาะชำพบว่าปริมาณ คาร์บอนไดออกไซด์มีผลต่อการรอดตายของต้นกล้า การใช้ปริมาณที่สูงมาก หรือต่ำเกินไปทำให้การรอดตายต่ำ เช่น การใช้ปริมาณคาร์บอนไดออกไซด์ 350 และ 1,500 μ mol CO_2 mol $^{-1}$ มีผลให้ต้นกล้ารอดตายต่ำกว่า 1,200 μ mol CO_2 mol $^{-1}$ ทั้งในสภาพ Growth chamber และ หลังย้ายปลูกใน สภาพเรือนเพาะชำ การใช้ปริมาณคาร์บอนไดออกไซด์ 1,200 μ mol CO_2 mol $^{-1}$ ส่งผลให้ต้นยางพารามีการรอดตายสูง โดยมีอัตราการรอดตาย 90% ในขณะที่ 350 μ mol CO_2 mol $^{-1}$ ทำให้อัตราการอดตายลดลงเหลือ 70 % และ 1,500 μ mol CO_2 mol $^{-1}$ อัตราการรอดตายลดลงเหลือ 50 % หลังจาก ปรับสภาพต้นยางจนรอดตายต้นกล้ามีความเขียว และมีการแตกใบใหม่ และ เมื่อนำไปวางเลี้ยงในสภาพแปลงพบว่าต้นยางมีการเจริญเติบโตดี (ภาพที่ 12)

ภาพที่ 12 การปรับสภาพต้นกล้ายางพันธุ์ RRIM600 จากการเพาะเลี้ยงต้นอ่อน โดยใช้คาร์บอนไดออกไซด์ 1,200 µmol CO₂ mol⁻¹ ก) การปรับสภาพต[้]นกล้า ยางโดยใช้เวอมิคูไรด์เป็นวัสดุค้ำจุน ข) การปรับสภาพต[้]นกล้ายางในเรือนเพาะ ชำ ค) ต้นกล้ายางรอดตายหลังปรับสภาพระยะเวลา 1 เดือน ง) ต้นกล้ารอด ตายวางเลี้ยงในสภาพแวดล้อมภายนอกในที่ร่ม และ จ) ต้นกล้ารอดตายวาง เลี้ยงในสภาพแปลงได้รับแสงธรรมชาติ

การเพาะเลี้ยงชิ้นส่วนพืชจากต้นกล้า ที่ได้จากการเพาะเลี้ยงต้นอ่อน

การเพาะเลี้ยงชิ้นส่วนพืชจากต้นกล้าที่พัฒนาจากการเพาะเลี้ยงต้น อ่อนเพื่อการขยายพันธุ์โดยการเพิ่มยอดให้ได้ปริมาณมากโดยการเพาะเลี้ยง ข้อใบเลี้ยง ข้อ และยอด จากนั้นนำยอดที่ได้ไปชักนำให้เกิดการสร้างรากก็จะ ได้ต้นยางที่สมบูรณ์แต่ระบบรากที่ได้เป็นรากแขนงสามารถนำไปปลูกในแปลง ได้ และนอกจากนั้นยังสามารถนำตาที่ได้จากยอดไปใช้ในการขยายพันธุ์โดย วิธีการติดตาในแปลงได้ การเพาะเลี้ยงชิ้นส่วนพืชสามารถทำได้ตามขั้นตอน ดังนี้ คือ

- การเตรียมชิ้นส่วนพืช โดยการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้ม ชั้นในเมล็ดอ่อนยางพันธุ์ RRIM600 ตามขั้นตอนการเพาะเลี้ยง (Carron et al., 1995)
- 2. การชักนำการสร้างยอดรวมจากชิ้นส่วนพืช นำต้นกล้าจากการ เพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ดอ่อน มาตัดเป็นชิ้นส่วนต่าง ๆ เช่น ปลายยอด ข้อ และข้อใบเลี้ยง วางเลี้ยงบนอาหารที่เหมาะสม เพื่อชักนำการ สร้างยอดรวม
- 3. การชักนำการสร้างราก นำยอดที่ได้จากการเพาะเลี้ยงในสภาพ ปลอดเชื้อมาวางเลี้ยงบนอาหารสูตรที่เหมาะสมเพื่อซักนำการสร้างราก


จากการนำชิ้นส่วนพืชจากต้นอ่อนของยางพันธุ์ RRIM600 มาเพาะ เลี้ยงบนอาหารพบว่าข้อใบเลี้ยงสามารถชักนำการสร้างยอดได้บนอาหารสูตร MH (PL)+1BA-0.5NAA มีการสร้างยอดรวมปริมาณมากยอดมีการเจริญ เติบโตและยืดยาวขึ้น (ภาพที่ 13) และสามารถตัดข้อจากยอดรวมดังกล่าวไป วางเลี้ยงบนอาหารสูตรเดิมทำให้มีการเกิดยอดใหม่ (ภาพที่ 14) และสามารถ ตัดยอดไปวางเลี้ยงบนอาหารสูตรเดิมเพื่อชักนำการสร้างรากได้ต้นที่สมบูรณ์ แต่ระบบรากที่ได้เป็นรากแขนง (ภาพที่ 15)

ภาพที่ 13 การเพาะเลี้ยงข้อใบเลี้ยงจากต้นอ่อนที่ได้จากการเพาะเลี้ยงเปลือก หุ้มชั้นในเมล็ดอ่อนยางพันธุ์ RRIM600 ก) ต้นกล้าจากการเพาะเลี้ยงต้นอ่อนใน ระยะยอดอ่อน ข) การสร้างยอดใหม่จากการเพาะเลี้ยงข้อใบเลี้ยงโดยการตัด ยอดและลำต้นให้เหลือเฉพาะส่วนของข้อใบเลี้ยง ค) การตัดยอดจากต้นกล้าไป เพาะเลี้ยงเลี้ยง ง) การเจริญเติบโตของยอดใหม่

ภาพที่ 14 การเพาะเลี้ยงข้อจากต้นอ่อนที่ได้จากการเพาะเลี้ยงเปลือกหุ้มชั้นใน เมล็ดอ่อนยางพันธุ์ RRIM600 ก) ต้นแม่พันธุ์ในหลอดทดลอง ข และ ค) การ เพาะเลี้ยงชิ้นส่วนข้อ

ภาพที่ 15 ต้นกล้ายางจากการเพาะเลี้ยงชิ้นส่วนข้อของต้นอ่อนจากการเพาะ เลี้ยงเปลือกหุ้มชั้นในเมล็ดอ่อนยางพันธุ์ RRIM600

การปลูกตันกล้ายาง ในสภาพแปลง

ต้นกล้ายางพันธุ์ RRIM600 จากการเพาะเลี้ยงต้นอ่อน ที่ตั้งตัวได้ หลังจากการปรับสภาพแล้วนำไปปลูกในแปลงเพื่อศึกษาสมรรถนะของต้นยาง ได้แก่ การเจริญเติบโตและผลผลิตยาง (ภาพที่ 16)

การสร้างแปลงแม่พันธุ์เพื่อการขยายพันธุ์ยาง

การผลิตต้นกล้ายางโดยการเพาะเลี้ยงต้นอ่อนเพื่อเป็นวัสดุปลูกนั้น ยังมีข้อจำกัดเนื่องจากความสำเร็จของการเพาะเลี้ยงต้นอ่อนยางพันธุ์ RRIM600 นั้นยังไม่สามารถผลิตต้นกล้าให้ได้ปริมาณมากเพื่อนำไปปลูก เป็นการค้าได้ จึงได้นำต้นกล้าที่ได้ไปสร้างเป็นแปลงแม่พันธุ์เพื่อผลิตกิ่งตา ให้ได้ปริมาณมากสำหรับนำไปผลิตต้นกล้ายางชำถุง (ภาพที่ 17) ซึ่งคาดว่า หลังจากปลูกแล้วต้นยางจะมีการเจริญเติบโตดีและให้ผลผลิตสูงเนื่องจาก กิ่งตาที่ได้นั้นมีความเป็นหนุ่มเป็นสาวเพราะต้นแม่พัฒนามาจากเซลล์หรือ เนื้อเยื่อของเซลล์ร่างกายที่มีอายุน้อย ได้หลังจากการผสมพันธุ์ 6-8 สัปดาห์

ภาพที่ 16 การนำต้นกล้ายางพันธุ์ RRIM600 จากการเพาะเลี้ยงต้นอ่อนปลูก ในแปลง ก) ต้นกล้ายางหลังปรับสภาพ ข) ต้นกล้ายางขณะปลูก ค-จ) ต้นยาง หลังปลูก 10 เดือน ฉ) ต้นยางหลังปลูก 2 ปี และ ช) ลักษณะโคนต้นยางไม่มี รอยเท้าช้าง หลังจากปลูก 2 ปี

ภาพที่ 17 การนำต้นกล้ายางพันธุ์ RRIM600 จากการเพาะเลี้ยงต้นอ่อนปลูก เป็นแปลงต้นแม่พันธุ์เพื่อผลิตต้นยางชำถุง ก และ ข)ต้นแม่พันธุ์ ค และ ง) ต้นผลิตกิ่งตา จ และ ฉ) ต้นกล้ายางชำถุงจากกิ่งตาที่ได้จากการเพาะเลี้ยง ต้นอ่อน

ศึกษาสมรรถนะของตันยางชำถุง พันธุ์ RRIM600 จากกิ่งตาตันแม่เพาะเลี้ยงเนื้อเยื่อ

สามารถเพาะเลี้ยงต้นอ่อนยางพันธุ์ RRIM600 ได้แต่ยังไม่ประสบ ความสำเร็จในระดับการค้าได้ เนื่องจากข้อจำกัดของการเพาะเลี้ยงเนื้อเยื่อ เพื่อแก้ปัญหาดังกล่าวจึงนำต้นกล้ายางจากการเพาะเลี้ยงต้นอ่อนไปปลูกใน แปลงแม่พันธุ์สำหรับขยายพันธุ์กิ่งตาเพื่อการผลิตต้นยางชำถุงที่มีสมรรถนะ สูง ซึ่งยังไม่เคยมีรายงานความสำเร็จทั้งภายในประเทศและต่างประเทศ แต่ มีบริษัทเอกชนได้มีการนำเข้าต้นแม่พันธุ์ยูคาลิปตัสจากการเพาะเลี้ยงเนื้อเยื่อ มาปลูกเป็นแม่พันธุ์เพื่อผลิตต้นพันธุ์เป็นการค้า แต่ต้องมีการนำเข้ามาเป็น ระยะ เนื่องจากต้นแม่พันธุ์มีข้อจำกัดคือถ้ามีอายุมากจะทำให้ต้นลูกที่ได้ คุณภาพด้อยลง ดังนั้นในปี 2559 วิทยาและคณะ ได้มีโครงการวิจัยศึกษา สมรรถนะของต้นยางชำถุงที่ติดตาจากต้นเพาะเลี้ยงเนื้อเยื่อเพื่อศึกษา สมรรถนะของต้นยางชำถุงพันธุ์ RRIM600 จากกิ่งตาต้นแม่เพาะเลี้ยงเนื้อเยื่อ ในด้านต่าง ๆ ได้แก่ ด้านการเจริญเติบโต ด้านการปรับตัวกับสภาพแวดล้อม และด้านการให้ผลผลิตน้ำยางของต้นยางชำถุงเปรียบเทียบกับต้นยางชำถุง จากตาแปลงกิ่งตาทั่วไป เพื่อเป็นข้อมูลสำหรับยืนยันถึงสมรรถนะของต้นยาง ชำถุงก่อนนำไปส่งเสริมในเชิงการค้าต่อไปในอนาคต โดยปลูกทดสอบที่ ศูนย์วิจัยยางสุราษฎร์ธานี และแปลงเกษตรกรที่จังหวัดนครศรีธรรมราชและ บุรีรัมย์ พบว่าต้นยางที่ปลูกมีการเจริญเติบโตดี โดยเฉพาะทางด้านความสูง ของต้นยาง ส่วนการปรับตัวให้เข้ากับสภาพแวดล้อม ต้นยางที่ปลูกที่จังหวัด

บุรีรัมย์มีการปรับตัวได้ดี ต้นยางมีการเจริญเติบโตดีกว่าที่จังหวัด นครศรีธรรมราช ทั้งนี้เนื่องจากแปลงปลูกทดสอบของเกษตรกรที่ นครศรีธรรมราชได้รับผลกระทบจากจากสภาพแวดล้อมที่แปรปรวน และการ ระบาดของโรคในช่วงฤดูฝน (ภาพที่ 18-20)

ภาพที่ 18 แปลงปลูกทดสอบสมรรถนะของต้นยางชำถุงพันธุ์ RRIM600 จาก กิ่งตาต้นแม่เพาะเลี้ยงเนื้อเยื่อในศูนย์วิจัยยางสุราษฎร์ธานี หลังปลูก 1 ปี

ภาพที่ 19 แปลงปลูกทดสอบสมรรถนะของต้นยางชำถุงพันธุ์ RRIM600 จากกิ่ง ตาต้นแม่เพาะเลี้ยงเนื้อเยื่อในศูนย์วิจัยยางสุราษฎร์ธานี หลังปลูก 1 ปี

ภาพที่ 20 แปลงปลูกทดสอบสมรรถนะของต้นยางชำถุงพันธุ์ RRIM600 จาก กิ่งตาต้นแม่เพาะเลี้ยงเนื้อเยื่อในศูนย์วิจัยยางสุราษฎร์ธานี หลังปลูก 6 เดือน

การนำผลงานวิจัยไปใช้ประโยชน์

การเพาะเลี้ยงเนื้อเยื่อยาง สามารถนำมาใช้ประโยชน์ในการพัฒนา งานทางด้านยางพาราได้โดยช่วยส่งเสริมให้การพัฒนางานมีประสิทธิภาพเพิ่ม มากขึ้น โดยเฉพาะงานทางด้านการปรับปรุงการผลิตยาง ได้แก่ การขยาย พันธุ์ และปรับปรุงพันธุ์ เป็นต้น

ด้านการขยายพันธุ์ยาง ปัจจุบันทำการขยายพันธุ์ยางโดยวิธีการ ติดตา โดยติดตาบนต้นกล้าที่มีอายุ 6-8 เดือน ซึ่งมีขนาดของต้นตอพอเหมาะ กับขนาดของตา โดยกระบวนการผลิตต้นยางชำถุงขนาด 1 ฉัตร ต้องใช้ระยะ เวลา 10-12 เดือน ดังนั้นความสำเร็จของการเพาะเลี้ยงเนื้อเยื่อยาง สามารถ นำมาช่วยย่นระยะเวลาการขยายพันธุ์ยางได้ สามารถติดตาได้เร็วขึ้น โดย การนำต้นที่ได้จากการเพาะเลี้ยงเนื้อเยื่อมาขยายพันธุ์กิ่งตาในหลอดทดลอง ทำให้ได้ตาที่มีขนาดเล็กลงสามารถนำไปติดบนต้นตอที่มีขนาดเล็ก อายุ ประมาณ 3-4 สัปดาห์ นอกจากนั้นต้นที่ได้จากการติดตาโดยวิธีนี้สามารถ เจริญเติบโตได้ดี และให้ผลผลิตสูงกว่า เนื่องจากตาที่ได้มีลักษณะอ่อนเยาว์ สามารถเชื่อมประสานกับเนื้อเยื่อของต้นตอได้ดี ลดปัญหาเรื่องการเข้ากันไม่ ได้ของเนื้อเยื่อต้นตอและกิ่งตา นอกจากนั้นการผลิตกิ่งตาจากต้นแม่พันธุ์ที่ได้ จากการเพาะเลี้ยงต้นอ่อนเพื่อผลิตต้นยางชำถุงช่วยสนับสนุนให้เกษตรกรมี วัสดุปลูกที่มีคุณภาพ ช่วยลดต้นทุนการผลิตและเพิ่มรายได้เกษตรให้สูงขึ้น

ด้านการปรับปรุงพันธุ์ ในอดีตถึงปัจจุบันการผลิตพันธุ์ยางใหม่ ๆ โดยการผสมพันธุ์และคัดเลือกพันธุ์ ซึ่งต้องใช้ระยะเวลานาน ถึง 25 ปี ดังนั้น เมื่อนำเทคโนโลยีชีวภาพทางด้านเครื่องหมายโมเลกุลมาช่วยในการคัดเลือกพันธุ์ ทำให้สามารถคัดเลือกลูกผสมที่มีลักษณะที่ต้องการได้ตั้งแต่การคัดเลือกใน ระยะต้นกล้า นอกจากนั้นเครื่องหมายโมเลกุลยังสามารถช่วยในการตรวจสอบ พันธุ์ความถูกต้องของพันธุ์ยางตลอดจนจำแนกพันธุ์ยาง การปรับปรุงพันธุ์ยาง นอกจากเครื่องหมายโมเลกุลแล้ว การโคลนยีน และการปลูกถ่ายยีน ช่วย ทำให้ได้พันธุ์ยางที่มีลักษณะที่ต้องการเร็วขึ้น โดยการนำยีนที่มีลักษณะที่ ต้องการ เช่น ยีนทนแล้ง ยีนต้านทานโรค เป็นต้น ถ่ายฝากเข้าไปในเนื้อเยื่อ ยางโดยผ่านการเพาะเลี้ยงเนื้อเยื่อ ทำให้ได้ต้นยางที่ทนแล้ง และต้านทานโรค โดยไม่ต้องผสมพันธุ์และคัดเลือกพันธุ์ ซึ่งมีรายงานความสำเร็จและกำลังการ ศึกษาค้นคว้าวิจัยจากนักวิจัยหลาย ๆ ประเทศ

ภาคผนวก

องค์ประกอบของธาตุอาหารสูตร MH (Carron, 1995)

ธาตุอาหาร	มก./ล.	สารละลายเข้มข้น	ก./ล.
NH4NO3	1600	Stock A (20x)	32.02
KNO3	2022		40.44
MgSO ₄ 7H ₂ O	740		14.8
NaH ₂ PO ₄ H ₂ O	276		5.52
CaCl ₂ 2H ₂ O	441	(ละลายแยก)	8.82
MnSO ₄ H ₂ O	16.9	Stock B (100x)	1.69
ZnSO ₄ 7H ₂ O	11.5		1.15
KI	0.83		0.083
H ₃ BO ₃	9.28		0.928
Na ₂ MoO ₄ 2H ₂ O	0.24		0.024
CuSO ₄ 5H ₂ O	0.37		0.037
CoCl ₂ 6H ₂ O	0.24		0.024
FeSO ₄ 7H ₂ O	27.8	Stock C (100x)	2.78
Na ₂ EDTA2H ₂ O	37.3	Warm/Dark	3.73
Thiamine HCL (B1)	0.67	Stock D-1 (100x)	0.067
Nicotinic acid	2.46		0.246
Pyridoxine HCL (B6)	0.62		0.062
Glycine	0.38		0.038
Biotin	0.05		0.005
Panthothenic	0.5		0.005
calaium salt			
Ascorbic acid	0.18		0.018
Choline choride	0.14		0.014
L-cystein HCL	9.4		0.94
Riboflavin (B2)	0.376	Stock D-2 (100x)	0.0376

^{*}Riboflavin (B2) ละลายด้วย KOH

อาหารสูตร MH (Carron, 1995) สำหรับเพาะเลี้ยงต้นอ่อนยางพารา

สารละลายเข้มข้น	IN	EXP	DEN	MAT	GER	PL
St.A (20X) (มล./ล.)	50	50	50	50	50	50
St.B (100X) (มล./ล.)	10	10	10	10	10	10
St.C (100X) (มล./ล.)	10	10	10	10	10	10
St.D-1 (1000X) (มล./ล.)	1	1	1	1	1	1
St.D-2 (1000X) (มล./ล.)	1	1	1	1	1	1
Inositol (ก./ล.)	0.054	0.054	0.054	0.054	0.054	0.054
AgNO ₃ (30 uM) (มล./ล.)	10	-	-	-	-	-
Spermidine (50M) (มล./ล.)	-	(50uM) 10	-	-	-	-
Sucrose (ก./ล.)	80	80	80	120	146uM, 50	73mM, 25
Activated charcoal (ก./ล.)	-	-	-	0.5	0.5	0.5
Gelrite (ก./ล.)	2	2	2	2.3	2.3	2.3
3,4-D (1000X) (มล./ล.)	(4.44uM) 1	(1.35uM) 0.3	(1.8uM) 0.4	-	-	-
Kinetin (1000X) (มล./ล.)	(4.44uM) 1	-	-	-	-	-
BA (100X) (มล./ล.)	-	(1.35uM) 10	(0.9uM), 6.6	-	-	-
ABA (1000X)(มล./ล.)	-	(5x10 ⁻³ uM), 0.0005	-	(1uM), 1	-	-
GA3 (1000X) (มล./ล.)	-	-	-	-	(8.7uM)), 1	(28.9uM), 1
рН	5.8	5.8	5.8	5.8	5.8	5.8
	Darkness	Darkness	-	-	-	-

Induction of embryogenesis; IN;

Expression of embryogenesis; Exp;

Day 26-50

Development of the embryo; DEV;

Maturation of the embryo; MAT;

Germination of the embryo; GER;

Day 106-130

Development of the plantlet; PL;

Day 131-161

ประวัติและผลงาน

ข้อมูลทั่วไป ดร.วิทยา พรหมมี

ตำแหน่งปัจจุบัน

นักวิชาการเกษตร8
(หัวหน้ากองวิจัยและพัฒนาการผลิตยาง)
สถาบันวิจัยยาง การยางแห่งประเทศไทย

สถานที่ทำงาน

กองวิจัยและพัฒนาการผลิตยาง สถาบันวิจัยยาง การยางแห่งประเทศไทย แขวงลาดยาว เขตจตุจักร กทมฯ 10900 โทรศัพท์ 02-5791576

ประวัติการศึกษา (เรียงลำดับจากวุฒิการศึกษาสูงสุด)

ระดับปริญญา	สาขาวิชา	สถาบัน	ปีที่จบ	ประเทศ
ปริญญาเอก	Biochemistry	China Agricultural	2552	สาธารณรัฐ
(Ph.D.)	and Molecular	University		ประชาชนจีน
	Biology			
ปริญญาโท	พืชศาสตร์	มหาวิทยาลัยสงขลา	2541	ไทย
(วท.ม.)		นครินทร์		
ปริญญาโท	การบริหารจัดการ	สถาบันบัณฑิตพัฒน	2561	ไทย
(รป.ม.)	ภาครัฐ	บริหารศาสตร์		
ปริญญาตรี	พืชศาสตร์	มหาวิทยาลัยแม่โจ้	2538	ไทย
(วท.บ.)				
ประกาศนียบัตร	ภาษาจีนกลาง	Beijing Language	2548	สาธารณรัฐ
	ระดับต้น	and Culture		ประชาชนจีน
		University		

รับทุนรัฐบาลไทย-จีน ศึกษาต่อระดับปริญญาเอกและเรียนภาษาจีนกลาง ระดับต้น (พ.ศ.2548-2552) ณ. สาธารณรัฐประชาธิปไตยประชาชนจีน ภายใต้โครงการแลกเปลี่ยนความรู้ทางวิทยาศาสตร์และวิชาการไทย-จีน โดยกระทรวงการต่างประเทศ ประเทศไทย และกระทรวงศึกษาธิการ ประเทศ สาธารณรัฐประชาธิปไตยประชาชนจีน

ความชำนาญ/เชี่ยวชาญพิเศษ

การเพาะเลี้ยงเนื้อ การถ่ายฝากยีน และปรับปรุงการผลิตยางพารา

ประสบการณ์การทำงาน (งานวิจัยและพัฒนา)

ศึกษาค้นคว้าวิจัยและพัฒนายางพาราด้านการผลิตยาง ได้แก่ การปรับปรุง พันธุ์ยาง เทคโนโลยีชีวภาพยาง และการเขตกรรมยาง

รางวัล/ผลงานวิจัย

1. รางวัลนักวิจัยดีเด่น

ด้านการปรับปรุงพันธุ์ยาง พันธุ์ฉะเชิงเทรา50 (ปี 2545)

2. รางวัลชนะเลิศ ประเภทสิ่งประดิษฐ์

การประกวดนวัตกรรมการยางแห่งประเทศไทย ประจำปี 2561 เรื่อง การขยายพันธุ์ยางแนวใหม่ลดต้นทุนลดเวลา

3. รางวัลชนะเลิศ ประเภทสิ่งประดิษฐ์

การประกวดนวัตกรรมการยางแห่งประเทศไทย ประจำปี 2562 เรื่อง การผลิตต้นกล้ายางพันธุ์ RRIM600 ที่มีคุณภาพสูงโดยการเพาะ เลี้ยงต้นอ่อนในสภาพปลอดเชื้อ

ผลงานวิจัยที่สำเร็จ

- 1. การสำรวจและประเมินปริมาตรไม้ของลำต้นในยางแก่ก่อนโค่น
- 2. การผลิตต้นกล้าซีรูเลียมโดยการเพาะเลี้ยงเนื้อเยื่อเพื่อปลูกเป็นพืช คลุมดินในสวนยาง
- 3. การเพาะเลี้ยงเนื้อเยื่อและการปลูกถ่ายยืนในยางพารา
- 4. การเปรียบเทียบพันธุ์ขั้นต้นสายพันธุ์ยางลูกผสมชุด 400 RRIT-CH-37/1/2
- 5. การเปรียบเทียบพันธุ์ขั้นต้นสายพันธุ์ยางลูกผสมชุด 400 RRIT-CH-38/1/2
- การเปรียบเทียบพันธุ์ขั้นปลายสายพันธุ์ยางลูกผสมชุด
 400 RRIT-CH-35/2/4
- 7. การพัฒนาเทคนิคการเพาะเลี้ยงเนื้อเยื่อในยางพารา
- 8. การสร้างสายพันธุ์ยางทนแล้งโดยวิธีการปลูกถ่ายยืน
- 9. อิทธิพลต้นตอต่อความเข้ากันได้ของเนื้อเยื่อจากการติดตากับต้นตอ ขนาดเล็ก
- 10. การปรับปรุงพันธุ์โดยการกลายพันธุ์ในยางพารา

ผลงานตีพิมพ์เผยแพร่

- 1. วิทยา พรหมมี. 2554. การสำรวจและประเมินปริมาตรไม้ของลำต้นในยาง แก่ก่อนโค่น. การประชุมวิชาการยางพารา ประจำปี 2554 ครั้งที่ 1 วันที่ 20-22 กุมภาพันธ์ ณ โรงแรมเชียงใหม่ฮิลล์ อำเภอเมือง จังหวัด เชียงใหม่ สถาบันวิจัยยาง กรมวิชาการเกษตร หน้า 27-37
- 2. วิทยา พรหมมี. 2553. จีนกับยางพาราโคลนนิ่งที่ไม่หยุดนิ่ง. ว. ยางพารา 31 (3): 28-33.
- 3. วิทยา พรหมมี และ วราภรณ์ ศรีนาคเอี้ยง. 2555. การผลิตต้นกล้า ซีรูเลียมโดยการเพาะเลี้ยงเนื้อเยื่อเพื่อปลูกเป็นพืชคลุมดินในสวนยาง. ว. ยางพารา 33 (1): 35-40.
- 4. วิทยา พรหมมี. 2558. การผลิตต้นกล้ายางในอนาคต. ว. กสิกร 88 (3): 22-26.
- 5. วิทยา พรหมมี จินตนา ชาลีศรี และ วราภรณ์ ศรีนาคเอี้ยง. 2558. การผลิตต้นกล้ายางโดยการเพาะเลี้ยงเนื้อเยื่อในเชิงการค้า: นวัตกรรม ใหม่ของการผลิตต้นกล้ายางในอนาคต. ว. ยางพารา 36 (2): 9-16.
- วิทยา พรหมมี กฤษดา สังข์สิงห์ และ ธีระพงศ์ โทนุสิน. 2561. ความเป็น ไปได้ของการใช้ต้นตอยางขนาดเล็ก (อายุ 30 วัน) ในการผลิตยางชำถุง.
 ว. ยางพารา 39 (2): 31-44.
- 7. วิทยา พรหมมี และ วราภรณ์ ศรีนาคเอี้ยง. 2561.การเพาะเลี้ยงต้นอ่อน ยางพาราพันธุ์ RRIM 600 จากเปลือกหุ้มชั้นในเมล็ดอ่อน. ว. ยางพารา 39 (3) : 3-18.

- 8. วิทยา พรหมมี และ ชัชมณฑ์ แดงกนิษย์ นาถาวร. 2561. การสร้างสาย พันธุ์ยางทนแล้งโดยวิธีการปลูกถ่ายยืน. รายงานผลการวิจัยเรื่องเต็ม ประจำปี 2560. สถาบันวิจัยยาง การยางแห่งประเทศไทย. บริษัท นิวธรรมดาการพิมพ์ (ประเทศไทย) จำกัด. หน้า 45-60.
- 9. วิทยา พรหมมี. 2561. การขยายพันธุ์ยางโดยการเพาะเลี้ยงชิ้นส่วนพืชใน สภาพปลอดเชื้อ. รายงานผลการวิจัยเรื่องเต็ม ประจำปี 2560. สถาบันวิจัย ยาง การยางแห่งประเทศไทย. บริษัทนิวธรรมดาการพิมพ์ (ประเทศไทย) จำกัด. หน้า 89-111.
- 10. วิทยา พรหมมี. 2561.การเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ด ยางพาราในสภาพปลอดเชื้อ. รายงานผลการวิจัยเรื่องเต็ม ประจำปี 2560. สถาบันวิจัยยาง การยางแห่งประเทศไทย. บริษัทนิวธรรมดาการพิมพ์ (ประเทศไทย) จำกัด. หน้า 112-139.
- 11. วิทยา พรหมมี กฤษดา สังข์สิงห์ และ ธีระพงศ์ โทนุสิน. 2561. อิทธิพล ต้นตอต่อความเข้ากันได้ของเนื้อเยื่อจากการติดตากับต้นตอขนาดเล็ก. รายงานผลการวิจัยเรื่องเต็ม ประจำปี 2560. สถาบันวิจัยยาง การยาง แห่งประเทศไทย. บริษัทนิวธรรมดาการพิมพ์ (ประเทศไทย) จำกัด. หน้า 140-180.
- 12. Rujira Tisarum, Thapanee Samphumphung, Cattarin Theerawitaya, Wittaya Prommee and Suriyan Cha-um. 2017. In vitro photoautotrophic acclimatization, direct transplantation and ex vitro adaptation of rubber tree (Hevea brasiliensis). Plant Cell, Tissue and Organ Culture (PCTOC).

- 13. Prommee, W. and Teerawattanasuk, K. 2011. Progress of RRIT's Hevea Somatic embryogenesis. IRRDB International Rubber Conference 15-16 December 2011 In Chiang Mai Thailand.
- 14. Prommee, W. 2012. In Vitro Micropropagation of Calopogonium caeruleum For Soil Cover Crop under Rubber Plantation. IRRDB International Rubber Conference 29-31 October 2012 In Kovalam India.
- 15. Prommee, W. Sreenakiang, W. and Te-chato, S. 2014. Somatic embryogenesis and plant regeneration from inner integument of Hevea brasiliensis. 2014 International conference on rubber "Small rubber farms in a changing environment: meeting the challenges of a sustainable development in various contexts" Proceeding of abstracts August 28-30, 2014. Thaksin University, Phatthalung campus, southern of Thailand.
- 16. Prommee, W. and Te-chato, S. 2015. Somatic embryogenesis and plant regeneration from inner integument of Hevea brasiliensis. 2015 International Rubber Conference "Productivity and Quality Towards A Sustainable and Profitable Natural Rubber Sector" Proceedings 2-3 November, 2015. Ho Chi minh City, Vietnam.

รางวัล/ผลงาน

คำขอบคุณ

ผู้วิจัยของขอบคุณ นายสุจินต์ แม้นเหมือน อดีตผู้อำนวยการ สถาบันวิจัยยาง การยางแห่งประเทศไทย ที่ให้การสนับสนุนงบพิเศษ ค้นคว้าวิจัยในการก่อสร้างอาคารปฏิบัติการเทคโนโลยีชีวภาพ และให้ทุนสนับสนุนในการทำงานวิจัย นายพิเชษฐ ไชยพานิช ผู้อำนวยการศูนย์วิจัยยางฉะเชิงเทราที่ให้การสนับสนุนและ อำนวยความสะดวกในการทำงานวิจัย และคณะผู้ช่วยนักวิจัย อาคารปฏิบัติการเทคโนโลยีชีวภาพ คุณวราภรณ์ ศรีนาคเอี้ยง คุณจินตนา ชารีศรี คุณมะลิทอน สีสาคร คุณนฤมล สิริวงศ์ และ คุณปัทมา คำมณี ที่ให้ความร่วมมือทำงานวิจัยจนงานสำเร็จลุล่วง ไปด้วยดี

เอกสารประกอบ การถอดองค์ความรู้ด้านการผลิตยางพาราเพื่อการเผยแพร่

ชื่อเอกสาร การผลิตต้นกล้ายางพาราพันธุ์ RRIM600

โดยการเพาะเลี้ยงต้นอ่อนจากเปลือกหุ้มชั้นในเมล็ด

ผู้ถอดองค์ความรู้ ดร. วิทยา พรหมมี

กองวิจัยและพัฒนาการผลิตยาง สถาบันวิจัยยาง

การยางแห่งประเทศไทย

ผู้ดำเนินการ ดร. วิทยา พรหมมี

กองวิจัยและพัฒนาการผลิตยาง สถาบันวิจัยยาง

การยางแห่งประเทศไทย

